
0

AI REGIO Data Pipelines

Deliverable Author: NISSATECH

Work Package: WP1 (T1.3)

Date: MAY 2021

Approved by: -

Approved by: -

H2020 Innovation Action - This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 952003

The AI REGIO Project owns the copyright of this document (in accordance with the terms described in the
Consortium Agreement), which is supplied confidentially and must not be used for any purpose other than
that for which it is supplied. It must not be reproduced either wholly or partially, copied or transmitted to
any person without the authorization of the Consortium.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

1

Contents
1 StreamPipes Installation .. 2

1.1 Introduction ... 2

1.2 Installation ... 2

1.3 Additional configurations ... 2

1.3.1 UnknownHostException .. 2

2 StreamPipes Usage ... 3

2.1 Pipeline Elements PEs ... 3

2.1.1 Adapters .. 3

2.1.2 Data Sets/Streams .. 5

2.1.3 Data Processors .. 5

2.1.4 Data Sinks ... 14

3 Data4AI Platform methods ... 16

3.1 Introduction ... 16

3.2 Cleaning methods ... 16

3.3 Preparation methods .. 17

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

2

1 StreamPipes Installation

1.1 Introduction

This section contains installation and configuration walkthrough of StreamPipes toolbox for Linux
Operating System.

Useful content:

 StreamPipes – Getting Started
 apache/incubator-streampipes-installer

1.2 Installation

The easiest way to install StreamPipes would be to follow the guide found on StreamPipes – Getting
Started page. This will install StreamPipes in “user” mode, enabling interaction with its web
application and using its functionalities (managing PEs and pipelines, using SP visualization
dashboard, etc.).

Other option would be to follow guides provided on apache/incubator-streampipes-installer, which
extensively explains installation process and configuration options. It provides explanation regarding
installing StreamPipes in “developer” mode, as well. In said mode, all the necessary ports and
services are configured in order to enable development of custom pipeline elements and new
backend and UI features of StreamPipes. All functionalities of “user” mode are preserved, as well.

1.3 Additional configurations

1.3.1 UnknownHostException
During development of custom pipeline elements an UknownHostException error can occur. It
means that docker container is unable to properly map specified IP address to the appropriate IP
address on the host machine.

We recommend that this solution gets applied in order to resolve mentioned error.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

3

2 StreamPipes Usage

This section contains description of developed StreamPipes Pipeline Elements (PEs) – their
purpose, implementation, corresponding use-cases, etc.

It is organized according to their roles into 4 sections – Adapters, Data Sets/Streams, Data
Processors and Data Sinks.

Useful content:

 StreamPipes User Guide
 StreamPipes Developer Guide
 apache/incubator-streampipes
 apache/incubator-streampipes-extensions

2.1 Pipeline Elements PEs

Each PE description is organized into following sections – purpose/role, implementation, use-cases
it is being used for and additional comments, if required.

2.1.1 Adapters
SP Adapters represent special kind of PEs and are part of SP Connect Library. They are not directly
employed in pipelines, but are, in fact, used as “templates” to instantiate purpose-specific Data
Set/Stream PEs.

Therefore, they are used to create Data Sets/Streams that are going to fetch data from database
(PostgreSQL, InfluxDB, MySQL, etc.) or broker (RabbitMQ, etc.), subscribe with messaging protocol
(e.g., MQTT), use OPC UA, etc.

Adapters are used to configure specific Data Sets/Streams and define their Event Schemas.

Implementation-wise, important parts of Adapter are its model declaration, the way we start/stop the
Adapter and event schema fetching.

2.1.1.1 AAS over HTTP

This Adapter is used to instantiate a Data Stream PE that will periodically poll Asset Administration
Shell instance over HTTP, in order to fetch values of its properties.

Therefore, user is provided with options to configure the AAS instance to be connected with, as well
as the polling interval (Image 2.1.1.1).

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

4

Image 2.1.1.1. Configuration options of “AAS over HTTP” Adapter

Once created and used in pipeline, corresponding Data Source PE will connect to the specified AAS
instance and poll for data as long as said AAS instance is up and running.

Implementation

As this Adapter requires URL of a running AAS instance and polling interval to be provided, its model
is declared in the following way:

It prompts user to enter text value (requiredTextParameter with ROOT_AAS_URL_KEY) and integer
value (requiredIntegerParameter with POLLING_INTERVAL_KEY) representing URL and polling
interval, respectively.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

5

User input is fetched in the following way:

During Adapter configuration, in the Define Event Schema step, Adapter sends requests to provided
AAS instance URL to fetch available submodels and submodelElements. Once fetched, user can
select ones that are going to be part of events that corresponding Data Source sends out.

When starting corresponding Data Source PE (starting the pipeline), user-selected properties of AAS
instance during Define Event Schema step of Adapter configuration are singled out – properties that
are going to be polled for. In addition, a “single thread scheduled executor” gets started that will
periodically poll for data of selected properties.

When stopping the corresponding Data Source PE (stopping the pipeline), said “single thread
scheduled executor” gets stopped, thus ending the polling process.

Comments

 This PE requires version 0.68.0(-SNAPSHOT) of SDK and running StreamPipes instance in
order to develop and run this adapter.

 It is planned to update this PE’s configuration steps, in order to allow user to select which
submodels of provided AAS instance Event Schema gets fetched from.

2.1.2 Data Sets/Streams
SP Data Sets/Streams represent a starting point of pipeline. They are used for connecting the
pipeline to a data source, whether that is sensor (e.g., with some messaging protocol), database,
broker, HTTP server, some custom third-party service/system, etc.

Data Set/Stream PEs can be created either as an SP Adapter instance (preferred way, since it
enables custom configuration, e.g., defining which database Data Set/Stream connects to) or with
SP SDK (good option for creating use-case specific Data Sets/Streams that cannot be made general
or be reused).

Implementation-wise, important parts of Data Processor are its model declaration and logic (how is
data streaming performed).

2.1.3 Data Processors
SP Data Processors are main part of every pipeline – they are used for data processing,
manipulation, analysis, etc. Built-in Data Processor PEs include ones for event manipulation
(remove, change, add property, etc.), basic trend detection, image manipulation, filtering, etc. In
addition, with provided SP SDK, pool of Data Processors can be greatly expanded, thus covering
nearly all use-cases (Machine Learning, Complex Event Processing, Data Analysis, etc.).

Implementation-wise, important parts of Data Processor are its model declaration and logic (what
happens when new event arrives).

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

6

2.1.3.1 Trend with Numerical Comparison

This Data Processor performs Complex Event Processing using Siddhi engine and outputs results
of CEP query execution. Internally, this element uses StreamPipes Siddhi wrapper that maps
StreamPipes’ input and output events to the Siddhi engine input and output events, respectively.
Additionally, it provides means of writing CEP queries with regard to pipeline element configuration.

It detects whether comparison of some numerical property of input event to the one provided in
configuration step fulfils condition within given window of consecutive events. Therefore, the query
we want to execute looks like this:

define stream InputStream (<property> float);

define stream CondStream (cond1 bool, cond2 bool);

from InputStream#window.length(<window length>)

select count() == <window_length> as cond1, and(<property> <comparison operator> <comparison value>)

as cond2

insert into CondStream;

from CondStream

select cond1 and cond2 as <output property name>

insert into OutputStream;

Therefore, user is provided with options to configure which event’s numerical value – named
<property>, is going to be taken into account for specified trend detection, value it is going to be
compared with – named <comparison value>, operator that is going to be used for comparison –
named <comparison operator>, number of consecutive events that are going to be used – named
<window length> and name of the output property – named <output property name> (Image
2.3.1.1.).

Image 2.3.1.1. Configuration options of “Trend with Numerical comparison”
Data Processor with demo values

When used in pipeline, this PE looks upon “window length” number of last arrived events and
determines whether all of them fulfil comparison condition. If they do, it outputs “true”, otherwise, it
outputs “false”.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

7

Implementation

As this Data Processor requires numerical event property, comparison value and operator, window
length and output property name to be specified, its model is declared in the following way:

It prompts user to select numerical event property (requiredPropertyWithUnaryMapping with
PROPERTY_KEY, of requiredStream), upon which trend detection is going to be performed, and
operator (requiredSingleValueSelection with OPERATOR_KEY) that is going to be used for
comparison. Additionally, it prompts user to enter integer value (requiredIntegerParameter with
WINDOW_LENGTH_KEY), float value (requiredFloatParameter with
COMPARISON_VALUE_KEY) and text value (requiredTextParameter with OUTPUT_NAME_KEY)
representing window length, value used for comparison and name of output property, respectively.

User input is fetched in the following way:

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

8

Because we want to allow user to specify the name of the output property, we declared the model
with customTransforamtion outputStrategy. Therefore, this PE’s output strategy gets inferred after
configuration step, in the following manner:

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

9

Every new event that gets fed to this Data Processor, gets stored inside window of specified length.
Then, for each event inside said window, it gets determined whether it satisfies specified condition
or not – if they do, this PE outputs “true”, otherwise, it outputs “false”.

Comments

 Siddhi wrapper used for implementation of this PE is not yet fully developed and lacks certain
features, such as some extensions. Updates are planned for version 0.68.0.

 This PE was implemented with version 0.68.0(-SNAPSHOT) of SDK. Therefore, it requires
the same version of running StreamPipes instance in order to run this PE.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

10

2.1.3.2 Keras Neural Network

This Data Processor performs inference with loaded HDF5-formated Neural Network model and
outputs its result. It is required that the loaded NN model performs binary classification; i.e., it has
one output neuron that states probability that input instance belongs to certain class.

Internally, this element uses DeepLearning4J library (dedicated to Deep Learning in Java) to load
NN model and perform inference.

Upon connecting this PE to the pipeline, user is provided with options to configure which event
properties are going to be used as input for the NN model, what will their order be (i.e., which property
corresponds to which input neuron) and which NN model file is going to be used (Image 2.3.2.1.).

Image 2.3.2.1. Configuration options of “Keras Neural Network”
Data Processor with demo Event Schema

This PE requires a .h5 file to be provided in order for the NN model to be properly loaded.
Additionally, user must provide an order of event properties that are going to be used as input to NN
model in JSON format, like the one presented below:

{
 "order": ["temperature", "mass_flow"]

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

11

}

According to the presented order, value of “temperature” property will be used as input for first
neuron, while value of “mass_flow” property will be used as input for second neuron.

When used in pipeline, this PE loads selected NN model and, for each received event, orders its
properties according to the provided order and performs inference, outputting its result when
completed.

Implementation

This Data Processor requires numerical event properties, .h5 file of a NN model and JSON file
containing order of event properties to be specified. Therefore, its model is declared in the following
way:

It prompts user to select numerical event properties (requiredPropertyWithNaryMapping with
PROPERTIES_LIST_KEY, of requiredStream), that are going to be used as input for NN model.
Additionally, user is required to provide .h5 file (requiredFile with KERAS_MODEL_KEY) and JSON
file (requiredFile with PROPERTIES_ORDER_KEY), representing NN model and order of
properties, respectively.

User input is fetched in the following way:

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

12

We used fixed outputStrategy to define output schema, because we know what output to expect
from loaded NN model.

Comments

 It is rather difficult to implement a fully general and reusable PE that will use any NN model
because of the mappings between input and output of said model and PE. Therefore, we
fixed this PE’s output to one value and use it with NN models that have one output neuron.

 Other PEs should be implemented if there is a need for different types of NNs.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

13

 StreamPipes developers are working on a more reusable approach to using NNs within
StreamPipes.

2.1.3.3 Populate Missing Values

Sometimes, data acquisition services can fail to properly collect data (e.g., sensor fails to capture
measurement), leaving us with “holes” in our datasets which can have negative impact on further
analysis.

This element is developed to solve this problem – Its purpose is to fill/populate missing
measurements with some predefined values.

Upon connecting this PE to the pipeline, user is provided with options to configure which event
properties are going to be forwarded by this element and which of these properties are going to be
populated with which values (Image 2.3.3.1.). This is specified with list of property name and value
pairs.

Image 2.3.3.1. Configuration options of “Populate Missing Values”
Data Processor with demo Event Schema

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

14

It is important to configure appropriate values that are going to be used for populating properties,
e.g., use mean value of existing measurements for chosen property, with the goal being to ensure
that the populated measurements are as close as possible to the real ones and to follow behavior
patterns of said property.

2.1.4 Data Sinks
SP Data Sinks represent an endpoint of pipeline. They are used for sending notifications/alerts,
writing data into database, sending data to broker, HTTP endpoint, visualization system, etc. Data
Sink can be a part of StreamPipes (SP Notification system or SP Dashboard visualization system)
or it can be connected to a third-party system/service (PostgreSQL, MySQL, InfluxDB, Email,
RabbitMQ, Kafka, etc., or some custom implemented system/service).

Implementation-wise, important parts of Data Sink are its model declaration and logic (what happens
when new event arrives).

2.1.4.1 AAS over HTTP

This Data Sink is used to update submodelElements’ values of specified submodel of Asset
Administration Shell instance over HTTP.

Therefore, user is provided with options to configure the submodel of AAS instance and its
submodelElements which values are going to be updated (Image 2.4.1.1).

Image 2.1.1.1. Configuration options of “AAS over HTTP” Data Sink with demo Event Schema

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

15

When used in pipeline, this PE will send selected event data to AAS instance for every incoming
event.

Implementation

As this Data Sink requires URL of submodel of running AAS instance and list of event properties
which values are going to be sent to AAS instance, its model is declared in the following way:

It prompts user to enter text value (requiredTextParameter with AAS_SUBMODEL_URL_KEY) and
to select event properties (requiredPropertyWithNaryMapping with PROPERTIES_KEY, of
requiredStream) representing URL and list of desired event properties, respectively.

User input is fetched in the following way:

For each new event that gets fed to this Data Sink, an HTTP GET request gets sent for each of the
selected event properties, thus updating corresponding submodelElements of submodel.

Comments

 This PE was implemented with version 0.68.0(-SNAPSHOT) of SDK. Therefore, it requires
the same version of running StreamPipes instance in order to run this PE.

 Currently, this PE supports only submodelElements of type Property. It is planned to update
this PE’s configuration steps and logic, in order to support more types of sudmodelElements,
once they get integrated into AAS.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

16

3 Data4AI Platform methods

3.1 Introduction

This section contains list of Data Quality methods in Data4AI Platform, implemented with StreamPipes.

3.2 Cleaning methods

remove_params
This method is used to remove all parameters that, for example, did not pass the profiling test or were
deemed as not important.

remove_stage
This method is used to remove all parameters that belong to specified stage.

remove_products
This method removes instances that have missing values for a given stage and parameter.

make_new_param
This method is used to create new parameter based on the existing ones. It requires a formula (expression)
to be provided, based on which new parameter will be calculated.

remove_outliers
This method is used to remove parameters from measurements and timeseries that represent outliers,
based on the provided lower and upper boundaries.

resample_parameter(s)
This method performs resampling of specified timeseries to a desired frequency.

remove_products_with_less_datapoints
This method removes instances for which number of recorded values, for any of the specified parameter, is
smaller than the specified threshold. In the case of timeseries data (one of the specified parameters of an
instance) of length M and threshold T, if M is smaller than T, instance gets removed. In the case of
measurements data, if one of the specified parameters is missing its value, instance gets removed.

remove_products_missing_parameter

remove_products_with_missing_values
This method removes instances for which number of recorded values is smaller than the specified threshold.
In the case of an instance with N timeseries parameters of lengths M1, 2, ..., N and threshold T, if N * M1, 2, ...,

N is smaller than T, instance gets removed. In the case of an instance with N recorded measurements
data values, if N is smaller than T, instance gets removed.

fill_param_with_value
This method fills in missing values of measurement or timeseries with a given value. For example, with
average value for measurement or last recorded value for timeseries.
Whenever there is an empty property of an input event, it would get filled in according to the user‐specified
option.

Innovation Action - This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N. 952003

17

truncate_timeseries
This method is used to remove all datapoints in timeseries that were recorded before or after specified time
value.

3.3 Preparation methods

scale_data
This method performs scaling of data, according to required function (e.g., normalization, standardization,
etc.) and specified function parameters (minimum and maximum values for normalization, average and
standard deviation values for standardization, etc.).

